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Abstract

This article treats the statistical inference for factorial experiments
under an inverse Gaussian distribution for the failure times, A
reciprocal-linear model for the factor effects is motivated from the
context of the underlying Wiener process. Simple and explicit form for
the solution of the likelihood equations is given. Likelihood ratio tests
for the main and interaction effects are derived. The test statistics for the
main effects have an exact F distribution, while the test statistic for the
interaction effects has an approximate F distribution. An analysis of
reciprocals analogue of the usual normal theory analysis of variance, is
investigated. An application of the procedures is illustrated with a data
set of strength measurements of an insulating material. Fries and
Bhattacharyya (1983) consider similar model, but they provide no
explicit solution to the likelihood equations but via inverting - some
random matrix. The test statistics for main effects and interaction effect
which provided by Fries and Bhattacharyya (1983), all have
approximate F distributions. Also, a correction for their analysis of
reciprocals is corrected in the present work.

Keywords: Inver Gaussian; Factorial experiment; Maximum likelihood;
Analysis of reciprocals.

1. Introduction

The Inverse Gaussian family is a versatile one for modeling
nonnegative right-skewed data such as the data obtained from reliability
and life test studies. This family shares striking similarities with the
Gaussian family. The Inverse family of distributions, denoted
asIG(G,a) has probability density function given by
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f(y;0,0')= (27[0')_”2 y'me'(“")-l(’ﬂ_'"')z ;7 ¥>0,0>0,0>0.
0y

which belongs to the exponential families. The mean and variance of
this distribution are & and 6’ respectively.

The derivation of the IG distribution can be cast in the context of
fatigue growth or accumulation of damage in a material over time.
Specifically, if fatigue grows according to a Wiener process with a drift

7> 0 and diffusion constant 57, and if the material fails as soon as its
accumulated fatigue exceeds a critical level @ >0 , then the time to
failure has the /G(6,)distribution with 6 = »/nand o = (5/w)’ .

Statistical inference for one- and two-sample from /G(f,0) has
been extensively studied (see Seshadri 1993 for a survey). Regarding the
factorial experiment, few works are available. Tweedie (1957)
considered the case of one-way classification where random samples
from different IG populationsIG(G,.,a,.),i =1,..,a and that random
samples of sizemare drawn from population i(i=1,..,a), and
considered the likelihood ratio (LR) test for testing the hypothesis
6, =6, =---=0, = 6 (say) under the assumption that all the populations
have the sameo . He observed that the Inverse Gaussian family allows
of "hierarchical analysis of variance” which is analogous to similar
analysis for Gaussian family. Under the assumption of equal means, he
showed that the LR test could be based on a test statistic which

distributed as F, , , where n = Zn,. . Tweedie called this procedure
of testing "analysis of reciprocals". Shuster and Miura (1972) discuss a
two-way layout and propose some heuristic tests of hypotheses
assuming that @ is linear in the effects and #’c remains constant (i.e.

common ratios of mean to variance), this assumption is artificial when
viewed in the context of an underlying Wiener process.

Fries and Bhattacharyya (1983) consider the two-factor experiment
under the IG model with the assumptions that critical level @ and the

diffusion parameter §° of the underlying Wiener processes are
constants while the drift 7 (that is, the mean fatigue growth per unit

time) is linear in the factor effects. These assumptions entail a linear
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model for the reciprocal mean @' and a constant o for all levels of the
factors. The constancy of o is parallel to the homoscedasticity
assumption in the usual normal theory analysis of variance (ANOVA).
Considering  different IG  populations; IG((;: +a;+p; )" ,a) ;
vi=l.,a;j=1.,b; k=1.,n with the usual assumptions
Za,. = Z B; =0, they studied the maximum likelihood estimates
(MLE's) of the parameters u, a's, f's and o, but no explicit form for

these MLE's were given. In order to obtain these estimates, they used
different representation of the normal equation in order to obtain a
unique restricted MLE's. This solution requires inverting some random
matrix. Following this procedure, they propose LR test statistics for
testing main effects and interaction; each of these test statistics has no
explicit form in the observations and approximately follows an F
distribution.

>

In this article we consider the same model of Fries and
Bhattacharyya (1983). While they focus on the additive model, we
consider interaction model, in a more general form by adding a term
represent the interaction effects. We proved explicit form for all MLE's
of the parameters u, a's, #'s ando. Then; LR test statistics for all
different hypotheses are developed; each test statistic follows an exact F
distribution. Generalization to k-factorial experiments with interactions
is straightforward.

We organized the work as follows. In section 2, the case of one
factor experiment is considered. As we mention before, Tweedie (1957)
considers the case of one-way classification in the means
parameterization but not on the effects parameterization as we consider
here. This treatment of the one factor experiment is crucial as we will
see later. Section 3 deals with the case of two-factor experiment with no
interaction, where explicit solution to the likelihood equation is given
and a numerical example is used to illustrate that our solution is
identical to Fries and Bhattacharyya (1983). The case of two-factor
experiment with interaction is considered in section 4. Explicit solution
to the likelihood equation is also given. Section 5, discuss hypotheses
testing for main and interaction an effect, also the analysis of reciprocals
(ANOR) table is constricted as will as a decomposition of the reciprocal
observations into components that can be ascribed to the factor effects.
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2. The Case of One Factor Experiment

Consider a one factor life test with a levels of the factor. At each
level, n items are tested and their failure timesy;,i=1,...a, and

j=1,..,n recorded. The observations are assumed to be independent
with  y; distributed asIG(0,,0). Since the mean is inversely
proportional to the drift, the usual parameterization suggests the model

0 =pu+a;, »,a,=0 )
where uand a,'s represents the grand mean and the main factor effects

respectively. For the IG distribution we must have 6, >0 for all

i and o > 0. Thus the parametersu, @' ={q @, )and o lie in the
set

Q={(y,a',a):2ai=0;y+a,. >0,i=1,...,a;0'>0} 3)
We introduced the basic notation for the totals and the means that
will be used throughout the paper:

Zy,, =ny,,y. = ZZy.,—nay R= ZZy @)

Refemng to (1) and (2), the log-likelihood functlon has the form
I = const.—(1/2)an logo — (20)" ZZy; [y,](,u +a,)- 1] %)

Expanding the squared term, we find that the set (y‘,.,...,f,.,R) represent

a set of (a+1)-dimensional sufficient statistics, with the parameter
space Q of dimension (a+1) as well.

Equating to zero the first partial derivates of (5) with respect to (wrt)
upand q;, we obtain

HY; +Z&i Y. =na

py, + @ y.=n a<gi<l

6)
and the derivative wrt o leads to

6=—3 %y buta+ &)1 9

The system (6) of equations has the following unique solution
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a=ls 1
#maZf;
: (8)
A[:—_‘l——lztl—,l=1, ,a
Y. a7y
While

.1 an 1 1 A

0.=_|:R__Z___] or:—[R—an,u] 9
an a iy an

To test the hypothesis of no main effects, ie to
testH,:a, =a, =..=a, =0, againstH,:q, #a, #...2a,, the LR
test statistic is given by

G
A =2l et ~ sty |= @7 log[ggl (10)
~ 1

The last expression in (10) obtains from the general result that the
maximized log-likelihood, under each modelQ; ,i=0,1, has the

value - (%)a n(logd, +1), ignoring the constant term,. Expression for
G,is given by (9) while G, is given by

G, =—L|:R—an:l—:‘ (11)
an y

The rejection region consists of the large values of the statistic in (10).

We note that;

A=anlbg[l+o-°ro-'] (12)

g

G, -6
® 1 Consequently, the

1
LR test can equivalently be based on R, with large values in the

rejection region.
LetQ, =&, and

O Y

le y,J y[

which is strictly increasing function of R, =
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=\|.r_n 13
3 2-2] w

hence, R, = M = —Q% (14)
o, o)
The statistic o - ZZ{L__L:’ divided by o has x* distribution
=Y. g
i ij i.

with a(n—l). While, under the assumption of no main effects, the

statistics Q) =Z[Yi—%} divided by o has y? distribution with
a—1 degrees of freedom. The two statistics are independent (see
Seshadri (1983) and Datta (2005) for properties of inverse Gaussian

distribution); hence one can use the F test based on the statistic
a(n - I)Q;
T, L S O
(a - I)Ql
with (2 —1)and a(n - 1) degrees of freedom.

(15)

3. The Case of Two-factor Experiment With no
Interaction

In this section, we consider the same model as Fries and
Bhattacharyya (1983). While Fries and Bhattacharyya (1983) could not
obtain an explicit solution to the set of normal equation, we will provide
a solution to these equations and hence obtain an explicit form of the
ML estimates of the model's parameters. A numerical example used
before by Fries and Bhattacharyya (1983), is used here to show that the
two sets of solutions leads to identical estimates of the means.

The two-factor life test consists of a levels of factor A and b levels
of factor B. At each factor setting or cell (i, j), n items are tested and
their failure times Yusi=l.,a, j=1,..b and k =1,...,n recorded. The
observations are independent with Y distributed as IG. We focus in this

section on the additive or no-interaction model, which assumes that the
drift of the Wiener process corresponding to each cell is the sum of the



factor effects. Assuming that the mean is inversely proportional to the
drift, the usual parameterization of the model is

6 =p+a;+p;, Za —Z,B =0 (16)

i=]
where u, ;'s,and §;'s represent the grand mean, the main effects of

factor A, and the main effects of factor B, respectively. We must have
0,.j 20for all i, jando > 0. Thus the parameters u, Q'= (aI ,...,aa),

B =B, ,_,_,,Bb); and o lie in the set

Q= {(,u,a',,B', a):Za,. =>B,=0;
i j 17
,u+a,.+,3j >0, i=1,..,a j=1,...,b;0'>0}

We extended the basic notation for the totals and the means to the
two-factors experiments as follows

Yy = Zk:y.;. = ny; ZZy.,. = nby,;.
=22 = . -ZZZM naby (18)
R=EE T’
The lc;g-ljikélihood function has the form
I = const.—(1/2)an logo

‘(20)"Z;§yak_’[yy.@+a;+ﬂ,-)—1]’ (19)

Equating to zero the first partial derivates of (18) wrt 4 and «;, we
obtain

By +2 6y, +Dpy; =nab
i J
iy, +&Y,. +JZ[3.,~.y.-,-. =bn  1<i<a (20)
By + D8y By, =an 15j<b
and the derivative wrt o leads to

abnzzzy”" [y,,k(,u+a +ﬂ) if 1)
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Note that the summation of the a equations associated with the «,'s

yields the first equation; also, the summation of the b equations
associated with the B,'s yields the first equation.

It seems that there is no explicit solution to the system (20) of
normal equations. In fact, Fries and Bhattacharyya (1983) used the

conditionsZai = Z B; =0 to delete the last components of & and 3,
. i j

and hence, obtain restricted ML estimates of the model's parameters by
inverting some random matrix. The following theorem provide explicit
expressions for the ML estimates of the model's parameters, which is a
natural generalization of the solution obtained before in the case of the
one factor experiment.

Theorem 1

The solution to the system of linear equation (20) is given by

| 1 1 1 1 3
#=—Z_—+— -
a i Y. i Y Y.
R 1 1 1 .
a,=—-—— -, 1=1,...,a > (22)
Yi. a5y,
- 1 1 1
ﬂ,:-—-—— — _]_1) ’b
Ty bz.-:y., /
and the ML estimate of o is
G = —1—[R —abnji) (23)
abn

Proof
First notice that > @,=) B,=0 and that 6, =p+a,+
i J

i J

=L+L—_L 20 for alli,j; ie they obtained within the

Yi. y, Y.
parameter space Q. Second, It is easy to verify that these estimators
satisfy the first equation of the system. Finally, substituting these
estimators into the a equations associated with the a,'s, and summing
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over i yields the first equation. The same thing is obtained regarding the
system of the b equations associated with the 8,'s .
The expression of & is obtained in a straightforward way. O

We illustrate the above result with the following example which was
used before by Fries and Bhattacharyya (1983).

Example 1

Shuster and Miura (1972) analyzed a data set from Ostel (1963),
which is in the form of a randomized 2x 5 layout with 10 replicates per
cell. The data consist of the impact strength, in foot-pounds, from tests
on 5 lots of the same type of insulating material that are cut either
lengthwise or crosswise. The use of an IG distribution is plausible since
the impact strength is determined by building up stresses until failure
occurs. The assumption of constant diffusion parameter is also
appropriate since the same type of insulating material is being tested
under a fixed specification of the failure criterion.

Fries and Bhattacharyya (1983) used this data and obtain the

following restricted ML estimates for o and
¢=(lu’ Q, ﬂl’ B Bs, ﬂ4)
G =.02261

$=(1.342, -.039, —.134, -352, .182, —.212)

4
wile, & =-d, =.039 and f, =-) B, =-516
J=1

The ML estimates for o and b a=(a,,a,),

B=(B, By Bss By Bs )' using the solution given by (22) are

G =.02261

f=1342, G=(~.035,.035) 3= (-.137,-.350, .181, - .210, .516)'
The corresponding estimates for the cell means are calculated by using

the relation é.- j_l =p+a, +p - These estimated cell means are identical

to those obtained by Fries and Bhattacharyya (F&B) and are given in
tablel.
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Tablel. MLE of Mean Impact Strengths (10 Replicates per Cell)

Lot Number
Type of cut I I m 4
Lengthwise 5 919 997 690 870 .55
RMLE (F&B) 855 1051 .673 916  .550
MLE 855 1050 672 912 552
Crosswise ¥ .743 1.022 .624 .899 .526
RMLE (F&B) 803 972 640 856 .527
MLE 807 974 642 857 .58

Inspection of Tablel shows that both sets of estimators, the restricted
ML estimators given by Fries and Bhattacharyya (1983) and the ML
estimators given by (21) give the same _estimates of the cell

means é,.j_’ ,i=1..,a; j=1,.,b. That is to say that the parameters 0,.1.'s

are estimable. However, our estimates, besides being explicit, are easy
to calculate and accurate, since no rounded errors due to inverting any
kind of matrices are involved. OO

4. The Case of Two-factor Experiment With
Interaction (The full model)

In this section, we consider the same model as in the previous
section and impose the term of interaction to the means. As before,
assume that the mean is inversely proportional to the drift, the usual
parameterization of the model is

a b
6 =pu+a,+p,+6;, Zai =Zﬂj =Z§ﬁ =25.~;’—’0 ©(24)
=l =1 i f]

where u, a;'s, fB;'s and J;'s represent the grand mean, the main

effects of factor A, the main effects of factor B and the interaction
effects at the ith level of factor A and the jth level of factor B,
respectively. We must have 6, >0for all /,jando >0. Thus the

parameters i1, @'=(a, ..., ), B =(B,,...8,), 8 =(8,,-...6,,)and &
lie in the set
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Q={na'.p,8,0):Ya,=38=36=36=0
pta + B, + é‘,.j’> 0, il= l,...,a;' j= L...jb; o >0}
The log-likelihood function has the form
I = const.—(1/2)an logo
@) ST balura g @9

Equating to zero the first partial derivates of (26) wrt ¢ and a;, we
obtain

ity +Zay, +Z'ﬂ Vit (Syyy =nab
by, +a,y, +Zﬂyy +28ny =bn, 1<i<a

(25)

By, + 8y, +By, +> 6y, =an  15j<b (27)
i J

By, +6, v, +By; +8,y, =h, 1<i<al1<j<b

and the d'erivative wit o ledds to
&"'mzzzym ["m(ﬁ*a +8,+5, ) ] (28)

It can be seen easily that the solution to the rioithal equations given in
7)is

A7 D)
é 1
, ZZT—_Z_ > 7 Y
J ij. J
ZZ—'__Z—; .] = 17 ) > (29)
J yy i yu
n. 1 .~ A ~
j - MK, —p,, "ly » &, =15 ’b
V=3 h-a;-p;, i a, j J
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(30)

6:2;)—"[R—naby]——|: -ny. ¥y — } (31)

ijyy

5. Hypotheses Tests

The results of the preceding sections will now be used to develop LR
tests for ANOV A-type hypotheses.

For testing the hypotheses of additivity or absence of main factor
effects, the relevant models (hypotheses) are

Q4:9—1=,u+a +p+6; , ' \
Za Z,B 25:/ 25,!—0 (Full model)

=1 j=1

Q, :0,.!. =pu+a;+p;

a b
Ya, = B,=0 (additive model) >
i=] Jj=1
Q,:0 " ' =u+a, , a, =0 (no B effects) (32)
2 if i i

i=1

. b
Q, :By_' =u+p; Z,Bj =0  (no A effects)
=

Q, :6?,.1._l =u (no factor effects) ]

It is understood that each model also has the nuisance parameter ¢ and
that all 6,'s are all constrained to be positive..

Let &, denote the ML estimate of o .Expressions for &,'s are given
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A 1 i — -1 - -1 — -1
G, =——|R-bn . —an . +abn

= aom| Zy ;y.,. y. ]
. 1] _ '

=——|R-b ) 33

0-2 abn_ nZyl.. :I ( )
. 1] o
6, =——|R-an .

1 abn_ ;yj }

G, = ;lla—n[R —abn j“_']

Let [ (Q,) denote the maximized log-likelihood under Q,,
s=0,1,..,4. In general terms, the LR statistic, for testing a null
hypothesis €2,, nested within the full model €,, is given by

Ay = sy~ Lnastny | = 3bm log(—;—’—) (34)

4
When n is large, one can perform a LR test using the asymptotic
distribution of the test statistic (34). The rejection region of a level
a test would then be set as A, > y. where z2 is the upper a point of
x> with the degrees of freedom equating the number of parametric
constraints imposed by €, . However exact test statistics are available
as illustrated in the following.

Asin (12),
A, =abnlog(1+ =L :04) : (33)
. o,
. . » ] . . y . 6-3 - 6-4 '
which is strictly increasing function of R, = —— . Consequently,
O,

each LR test can equivalently be based on R,,. To examine the
individual test statistics, we introduce the following statistics

We can see that

abc(6, - 8,)= ZZ[ —”—]=Qo (say), (36)

I
yu Yy
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Under the assumption of no factor effects, J; /o has y7,_, disttibution.

4 )
- ~ ) —| na na ey .
abe(6, - 6,)=Y.| —~— |= 0 (say), (37
Jj \yij. y;
Under the assuniption of ho A effects, J, /o hds y72, distribution.
{ .
A | nb nb " v
abe(é, -6,)=Y, 575" 0, (say), (38)
i i. i..

Undef the assumptioni of ho B effects, 0, /o tias 2, distribution.

abe(6; -6,)= ZZ( ————:”———y—) O,(say),  (39)

y i. Y g
Under the assumption of no AB effects, i.e. no interdction, proved that
Q, /o is asymptotically distributed as x(za_,x,,_i) )
abné, = ZZZ ———|=0,(say), (40)
Yix yij. '
Q./ohas x7,,; distribiition, and is independent of the other Q.

LR test for no factor effects
The LR test is based on F, whete
_ Qyab-1)

— 41
® " Q,/ab(n-1) 1)
under the null hypottiesis of no factor effects, Fy; ~ F,,_, abli-) -
LR test for no A effects
The LR test is based on F},whete

" Qi ab(n-1)’
under the null hypothiesis of no A effects, F,, ~ F,_, -0 -



LR test for no B effects

The LR test is based on F,, where
__0,/b-])
Q./ab(n-1)’

under the null hypothesis of no B effects, F,, ~ Forabinoy -

(43)

24

LR test for no interaction effects
The LR test is based on F,, where
_ 0. Ma-1)pb-1)

Q,/ab(n-1)
under the null hypothesis of no interaction effect, F,, is approximately
follows F(,,_,xb_,),ab(,,_l).

34

(44)

Table 2, called the analysis of reciprocals (ANOR) table, presents
the sums of reciprocals components associated with the various factor
effects, and the F tests discussed earlier. The mean sum of reciprocals
(MR) is defined as a sum of reciprocals divided by the corresponding
degrees of freedom. The ANOR table has a striking similarity with the
normal theory ANOVA table with sum of reciprocals playing the role of
sum of squares.

Table 2 Analysis of Reciprocals (ANOR) Table

Sum of Degrees of

Source Reciprocals freedom MR F Ratio
Factor A (o} a-1 MR, MR,/MR,
Factor B 0, b-1 MR,  MR,/MR,
Interaction 0, (@-1)06-1)  MR,, MR, /MR, *
AB
Residual 0, ab(n-1) MR,

* this statistic is distributed approximately as an F distribution.

The resemblance between the ANOR for inverse Gaussian model
and the normal theory ANOVA is further enhanced by a decomposition

of the reciprocal observations 1/ Y Into components that can be
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ascribed to the factor effects. To this end, we formally write out the
identities

1 1 1 1 1 1 1 1 1 1
—=—+ |t || -t
Y Y. Yi. Y, Yi. Vi Yi. Y. Y Y.

1 1
=
Yix Vi

Summing (44) over i, j and k, we obtain

R :ab"y:] +0,+0, -0+ 0, (46)
The first term in (44), can be called the general reciprocal mean. The
second term represent an A effect, similarly, the third term represent an
B effect. The fourth term called an interaction effect.. The term

(Vi —¥;'), has the obvious interpretation as a residual provided we

bear in mind that the linear model is really on a reciprocal scale.
However, unlike the normal theory decomposition, the interaction effect
has a negative sign, this is due to the fact that the interaction may be
negative. Fries and Bhattacharyya (1983), could not give a complete
decomposition of the reciprocal as we demonstrate here, they attribute
that to a nonorthogonality component.

Example 1 (continue)

To illustrate the hypothesis testing procedures developed above, we
use the same data of example 1 to test for no interactions and for no
main effects. The relevant calculations are presented in table 3.

Table 3 The ANOR Table

Sum of Degrees of

Source . MR F Ratio
Reciprocals  freedom
Cut 0.379074 1 0.3791 17.0754
Lot 6.822565 4 1.7056 76.8307
Interaction 0.284883 4 0.0712 3.20815
Error 2.0015 90 0.0222
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